
RF i n  T \ 
~c = ~ec, i - -  T ~o)' 

where T is the time from the moment that the bottom hole passes the volume of rock examined; 
oco and To, some experimentally determined constants, which do not depend on temperature and 
time; T, absolute temperature; R, gas constant; U, activation energy. In this case, the loss 
of stability and cavern formation will begin in the higher sections of the unreinforced well 
in the homogeneous rock; layered rocks can be taken into account using the same equations. 
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PERIODIC PROBLEM OF THE INTERACTION OF SYSTEMS 

OF CIRCULAR OPENINGS AND STRINGERS 

M. Z. Vulitskii and I. D. Suzdal'nitskii UDC 539.319 

Problems involving interaction of different types of concentrators, viz., openings, cuts, 
rigid edges (stringers), arising in technology have been the subject of a number of investi- 
gations, which are reviewed in [i, 2]o In particular, the interaction of an opening with one 
and two stringers was examined in [i, 3], and the interaction of a periodic system of cuts 
and stringers was examined in [4]o 

In this paper, we examine the mutual effect of a periodic system of circular openings, 
situated along a straight line, and a periodic system of stringers, orthogonal to this 
straight line. In this case, it is important to combine the methods in [i, 4, 5], developed 
for singular concentrators, with the techniques for solving problems on the weakening of a 
surface by an opening and a periodic system of openings [6, 7]. 

We shall examine a plate, consisting of a periodic system of circular openings and a 
periodic system of stringers (Fig. i). The centers of the openings Yk (k = 0, • • ...) 
are situated on the straight line y = 0 at the points x k = 2kb, and the radii of the openings 
equal p(p < b). The stringers F k continuously fixed to the plate have the same length 2a 
(a < b), perpendicular to the straight line y = 0 and intersected at the points x k = (2k + 
l)b. The stringers do not resist bending and function only under tension; E, v, and h are, 
respectively, the elastic modulus, Poisson's coefficient, and the thickness of the plate; 
Eo, and So are the elastic modulus and surface area of the transverse section of a stringer. 

For the elements in the elastic fields the following notation is used: ax, Oy, Txy , 
stress components; u, v, components of the displacements of the plate; N(y), normal force in 
the section of a stringer; e~ relative elongation of its axis. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, No. 2, 
pp. 159-162, March-April, 1982. Original article submitted December Ii, 1980. 
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The following stretching forces are applied to the plate 
oo oo 

~y = p = c o n s t ,  ~x -----'q4 2 - - 0 .  (1 )  

The condition for equilibrium of any infinitely small element of the stringer r~ = {x 
= (2k+i) b, [Yl < a} , perpendicular to the plate along its entire length, the absence of resist- 
ance of the stringer to bending, and the continuity of the displacement components and rela- 
tive elongation gy = ~v/~y in crossing the stringer axis have the form 

h ( % + _  ~ - y ) .  N '  ( y ) =  O, a + _  ~ -  _-- O; (2) 

+ = ~; = eo" (3) 
u ++~v +=u-+~v-, ey 

E I Ov \ +  Expression (2) together with e q u a t i o n  N(y)= EoSoe~ 0So[~y) lead to the relation 

Y l o v e +  

E q u a l i t i e s  (3 )  a n d  (4 )  d e t e r m i n e  t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  c o u t o u r s  P k .  H e r e ,  
they are the same as in [I]. 

Let us introduce the Kolosov--Muskhelishvili functions ~(z) and #(z). According to [6] 

(4) 

= 2[(l)(z) -4- q)(z)], % = % , % - -  o + 2i~y 2~q,'(z) + Y(,-)], 

2G(u + it,) = uq~(z) --zq/(---~) --~(--'~), (D(z) ---- r ~ z )  = r (5 )  
z = x + ~y, 2G = E/(I  + v), n --~ (3 - -  v)/(l :-{-- v). 

Then, relations (3) and (4) together with the condition for the absence of stress on the 
contours of the openings %,~ = {2kb + pe~~ 0 < O ~< 2a} are transformed to the following boundary- 
value problem: 

H + (t) - n 7 (t) = o, 

(~: + j) b~ + (t) - ,p- (t)] + ~'o Re t,'+(t) = o, 

t ~ Fn, (6) 

r + q,(s--'-) - -  e2i0lsr + ~I'(s)] = 0, s ~ %,~, 

where H,(z) = ur -- zr -- ~(z); 

H~(z) = x(I)(z) - -  4(z) + zq)'(~) + W(z), ~ = EoSo/2~h. 

We assume that 

p 
~ ( z )  = %,h(z)  + ~2(z)  + - ~ - z ,  

l p ( z ) =  { ~ 3 , h ( z ) + [ z - - ( 4 k +  2)b](pl.h(z)} - { - ~ ; 2 ( z ) + - ~ - z ,  (7 )  

~j~(.)=~ Ij(D(~-z) -~dL i=1,3, 
bh ~" 

b h = {(2k~- t ) b - - i a ,  (2k~- t ) b +  ia}. 

The functions ~ja are discontinuous when crossing the stringer line. 
(6) turns out to be satisfied, if f3(~)=• , and the second is transformed into the form 

[1 (t) + 
~ - , - -  t (8 )  

+ ~  
--ai  

w h e r e  L~(D = (n/2b) cot(n~/2b)" 

E v i d e n t l y ,  Imf~  ( t )  = O. 

The first relation 
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For periodic functions ~=(z) and ~a(z) and functions of the density f~(~) with integral 
representation (7), we adopt the expression [7] 

(I)2(z) = P 82m A m (z) -~ ~ (2k -~- t) ah+l(2b)-2~-2 A m (~) (~ - -  z)~kd~ , 
~=o ~=0 '~0 (9) 

[c t :~ V 2 (z) = p e =m ~ (z) -~ ~-[ ~ (2k -~ 1) cr -~'tt-2 
m=O h=0 

X j" C m (~)(~--z)2hd~[ --  #f~2 ( Z ) -  z(])'~ (z), 
"% J 

The  f u n c t i o n s  Am(~)  a n d  Cm(5)  a r e  a s s u m e d  t o  b e  a n a l y t i c  o u t s i d e  Yo a n d  v a n i s h i n g  a t  i n -  
f i n i t y .  

Substituting (9) into (8) and the third relation (6) and equating the coefficients with 
identical powers of ~, we obtain an infinite system of equations of the form (in what follows, 
t = ate, ~ = a$~, s = psi, and the index 1 is dropped) 

1 1 

gm ( t ) -  ~ -  y g'm~(~) d~ -~ ~. y gm ( $ ) Q ( ~ -  t)d~ + X R e  [ •  ( t ) -  2A:  ( t ) +  2itA'~ ( t ) +  C" m (t)] + Fi,m (t)----0, ( 1 0 )  
- - t  --1 

t : 2 r ~ 9 C m (s) + (1 -~ s 2) A m (s) --  s A m (s) + (s - -  s - t )  A ~  (s) -~ (• A- t - -  s ~) U m (s) - -  s 'U= (s) - -  V m (s) + F~,= (s) = O, 

] t [ < i ,  s = e  i ~  . . . . .  

where 

~'~.o (t) = ~ (~ + I); F~0 (s) = ~ (I -- sb; 

m--I 

F1, m (t) = ~ (2k -~- t) r 1 [• h (t) --  2Gl,2~ (t) - -  4[tkGl .~t_l (t) ~, IIl,2h (t)]; 
h=0 

F~, m (s) = - -  ~ (2k -~ 1) ~h+l [(1 " s ~) Gl,2~(s ) + s~at,o~(s) 
h = 0  

+ 2k (s --  s - l )  Gl.2k_l(s) - -  Hl,2k (s)l (l ---- 2m - -  2k - -  2); 

1 

v, .  (s) = ~ -  b~ (~) L2 (~, s) d~; 
- -1  

1 

V m (s )  = ~ _  ] m  ('~) t - -  i (I: - -  sin O) --~ L .  ('~, s)  e~;  

- - I  

22k I~a~ 2k 
Q (~1 = _ ~ ~2k-t 

k = l  

B2k are the Bernoulli numbers [8]. 

In order to solve Eqs. (i0), we will use Muskhelishvili's method [6, 7], proposed for 
studying a plane, containing a circular opening, and the Mul'toop--Kalandiya method [i] for 
numerically integrating singular integrodifferential equations. We seek the functions Am(S ) 
and Cm(s ) in the form of the series 

oo 

A m (s) = -- p %" - -  amn s-2n§ C re(s) ~ c~, 
2 n - - i  ~ - - P  -'~ 2 n - - I  

$ - - 2 n + 1  
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2b 

Fig. 1 

TABLE i 

Ka 

0,22 

0,20 

0,~8 

5 

/ f 

y- 
0,~6 

5 25 125 6 

Fig. 2 

K1 

B=0 

K2 

0=-f 

0 
5 

25 
i25 

0 
5 

25 
i25 

0,8 

3,0i58 
3,0059 
3,0053 
3,0050 

0,8398 
0,8395 

0,8395 
0,8395 

o,2 

I , 

3,0065 
2,9976 
2,9964 
2,996i 

0,8870 
0,8864 

0,8862 
0,8862 

1,2 

3,0031 
2,9945 
2,9932 
2,9929 

0,9i76 
0,9i68 

0,9t67 
0,9167 

0,8 

3,080t 
3,0484 
3,0438 
3,0427 

0,7675. 
0,7688 

0,7690 
0,7690 

0,3 

i 

3,0328 
3,0066 
3,0027 
3,00t9 

0,7982 
0,7979 

0,7979 
0,7979 

t,2 

3,0158 
2,0918 
2,9884 
2,9875 

0,8399 
0,8384 

0,8383 
0,8382 

and the function gm(~) in the form of an interpolating trigonometric polynomial 

N l)n+ 1 . p ~ (-- cos0 n . . l n  (5' -r  I) 0 
gin(cos O) --  3,: LT'- t ~ gmn COS 0 - -  COs 0 n 

J n~l 

,0,~ = a n / ( . V  -k t). 

The problem is reduced to an infinite algebraic system for the coefficients of the ex- 
pansions introduced above, which is not written out here. 

Let us estimate the stresses on the contours of the openings and the effect of the open- 
ings on the coefficient of stress intensity at the ends of stringers. According to (5), (7), 
(9), for z -- pe io, we have 

% = 4Re r (s) = p -~- 4p Be e.- I A.~ amnS q- 2e 2 ah+ 1 a m _ k ,  n 
m--0  I n = l  h = 0  n = l  

I 

,~ t+,2n--le2] ,,-21~-~2 - -  2--~ "" ~'2n+t" g,n (';) Lo (g, s) d~., Cj~ ---= k ! [n ! (k  - -  n)!] - t .  

- - t  

The tangential stress ~x~ = Im[fr ~(z)] in traversing the stringer axis has a disconti- 
nuity , which, according to Sokhotskii's equations, turns out to equal T+--*~=--(• 
as a result of which just as in [3], we obtain the following expression for the coefficient 
of intensity of stress at the end of a stringer 

_~+I Kst=lim]/a---~y.~+u(y)__ __6.__l /a l im-l / t__--~/ t (g  ) • - I / ~  C.,nlim gr~(g) 
71~=0 

The effect of stringers on the stress distribution is illustrated by the results of cal- 
culations carried out retaining in the expansions (9) terms having indices m = 0, i, 2. Ta- 
ble 1 presents the values of the coefficients of stress concentration Kl = oe/pI@=o and K2 = 
os/ple=~12 with the parameters el = a/p, e= = a/b, 6 = 2EoSo/Eah varying. For 8 = 0,-we ob- 
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tain the results in [7]. The role of stringers in removing stresses on contours of openings 
becomes all the more significant, the closer the openings are situated to one another and, 
in addition, with increasing length and rigidity of stringers, their action on the change in 
the coefficient K~ is greater than on the change in K2. For example, for the case e~ = I, 2, 
when the rigidity 6 increases, the coefficient K~with e2 =i0,3 decreases by a factor of 
three more rapidly than for e2 = 0.2. Moreover, for values of e, less than one, in the case 
e= = 0.3, when 6 is increased and K, decreases correspondingly, some increase is observed in 
K2. 

The behavior of the coefficient of stress intensity at the end of a stringer is illus- 
trated in Fig. 2, where K a = Kst [p(• + i)]-*. The quantity e, assumes the values 0.8. i, 
1.2, and e= assumes the values 0.2 (continuous lines 1-3, respectively) and 0.3 (dashed 
lines)~ The increase in the length and rigidity of a stringer, evidently, removes the stress 
on the contour of the opening, but greatly increases the stress intensity at its ends. 

We honor the memory of L. M. Kupshin, to whom we are indebted for many suggestions and 
constant attention to our work. 

LITERATURE CITED 

i. A. Io Kalandiya, Matehmatical Methods of Two-Dimensional Elasticity [in Russian], Nauka, 
Moscow (1973). 

2. L.A. Galin (ed.), Development of the Theory of Contact Problems in the USSR [in Rus- 
sian], Nauka, Moscow (1976). 

3. G.T. Zhorzholiani and A. I. Kalandiya, "Effect of stringers on the distribution of 
stress near an opening," Prikl. Mat. Mekh., 38, No. 1 (1974). 

4. I.D. Suzdal'nitskii, "Periodic problem of strengthening plates with stringers, weak- 
ened with a system of cuts," Prikl. Mat. Mekh., 43, Noo 4 (1979). 

5. L.M. Kurshin and I. D. Suzdal'nitskii, "Stressed state of an elastic surface, weakened 
by an infinite series of longitudinal--transverse cracks," Zh. Prikl. Mekh. Tekh. Fiz., 
No. 5 (1975). 

6o N.I. Muskhelishvili, Some Fundamental Problems in the Mathematical Theory of Elastic- 
ity [in Russian], Nauka, Moscow (1966). 

7. I.I. Vorovich and A. S. Kosmodaminskii, "Elastic equilibrium of isotropic plate, weak- 
ened by a series of identical curvilinear openings," Izv. Akad. Nauk SSSR, Otd. Tekh. 
Nauk, Mashinostr., No. 4 (1959). 

8. Io S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic 
Press (1966). 

311 


